Using the Internet Protocol suite to build an end-end IPTV service

K.K. Ramakrishnan
AT&T Labs Research, NJ USA

ITC-2011– Tutorial
DISCLAIMER

The information provided here is not meant to describe specific AT&T’s products or services. The content and material herein are entirely based on the opinions and knowledge of the author and are not meant to convey any opinions of AT&T.

These slides do not reveal any information proprietary to AT&T Business Units, suppliers, customers or business partners.

Most material is based on publicly available information or well-studied networking extrapolations and modeling formulations of public information.

The remainder of material is protected by patents or patent applications licensed by AT&T.
A Video Distribution Network based on IP

• AT&T has chosen to build a video distribution network on top of an end-end IP infrastructure

• Alternative approaches adopted by Cable providers and Verizon with FTTH
 – Use IP in the backbone, but seek to use the capacity of the access plant downstream to have a Layer 2 environment
 o Use the bandwidth to distribute channels and depend on “tuning” to access a particular channel

• Having an end-end IP distribution offers both opportunities and challenges
 – Enables integration of multiple applications; evolving from a linear-TV distribution to content distribution may be easier
 – Challenges arise: packet loss and recovery; congestion; channel change
IPTV service

• High visibility: direct customer impact.
• Service is very sensitive to delay and packet loss
 – Congestion on links -> packet loss-> video quality impairment
 – Need to tackle multiple failures, which are not very rare
 – Higher layer mechanisms - FEC, retransmission based recovery of lost packets - can handle (with reasonable delays), burst losses of 50 milliseconds
 o Fast restoration is critical

AT&T’s IPTV service:
 o 2+ million customers;
 o Triple play: video, internet, and voice
Network backbone

- One Video hub office (VHO) per metro area
- Broadcast video content is distributed to VHOs using single source sparse mode multicast (PIM-SSM)
 - a separate multicast tree for each channel
IPTV Network – Example End-to-End Flow

Content Providers

A-server

National Feed: each channel encrypted over 1 Multicast (PIM) group

R

Intermediate Metro

VHO

OC-48/192 or 10GE

SHO

Local content added to national feed via existing multicast groups

A-server

D-server

D-server

VoD- server

Back office Systems, DBs

Metro VHO

Broad-band Internet Provider

Intermediate Office (IO)

Serving Office

DSLAM and Serving Office only multicasts channels in use downstream (via IGMP)

DSS, OC-n

P- MP Video Stream

P-P Flows (Unicast)

1 or 10 GE/Fiber

VDSL/Copper

Set-top Box (STB)

Residential Gateway (RG)

VoD, Instant CC, ISP

RT

DSLAM

FTTC

Access Metro

Access Metro

R = Router; E = Ethernet Switch; R/E = Hybrid

GPON = Gigabit Passive Optical Network

SHO = Super Hub Office; VHO = Video Hub Office

IGMP = Internet Group Management Protocol
Some Network Characteristics for Providing IPTV

• Streaming video national video stream generally uses MPEG-X for compression/encoding over RTP
 – Use of IP Multicast (PIM-SSM) when possible from SHO to VHO and VHO to IO enables significant transport cost savings
 – Ethernet switches use Internet Group Management Protocol (IGMP)-snooping to change channels and bridge multicast groups to VLANs

• **Perceived video quality is not highly tolerant of loss.** Example approach:
 – L1/L2 protocols restore vast majority of network failures ≤ 50 ms
 – STB & reliable transport layer protocols to overcome failures ≤ 50 ms

• Instant Channel Change (ICC) popular feature to overcome delay in Multicast group/IGMP change
 – Typically implemented via Unicast IP flow (point-to-point)

• VoD is usually unicast from VHO to STB
What transport service does an app need?

Data loss
- some apps (e.g., audio) can tolerate some loss
- other apps (e.g., file transfer, telnet) require 100% reliable data transfer

Timing
- some apps (e.g., Internet telephony, interactive games) require low delay to be “effective”

Throughput
- some apps (e.g., multimedia) require minimum amount of throughput to be “effective”
- other apps (“elastic apps”) make use of whatever throughput they get

Security
- encryption, data integrity, ...

Application 2-9
Transport service requirements of common apps

<table>
<thead>
<tr>
<th>Application</th>
<th>Data loss</th>
<th>Throughput</th>
<th>Time Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>file transfer</td>
<td>no loss</td>
<td>elastic</td>
<td>no</td>
</tr>
<tr>
<td>e-mail</td>
<td>no loss</td>
<td>elastic</td>
<td>no</td>
</tr>
<tr>
<td>Web documents</td>
<td>no loss</td>
<td>elastic</td>
<td>no</td>
</tr>
<tr>
<td>real-time audio/video</td>
<td>loss-tolerant</td>
<td>audio: 5kbps-1Mbps video: 10kbps-5Mbps</td>
<td>yes, 100’s msec</td>
</tr>
<tr>
<td>stored audio/video</td>
<td>loss-tolerant</td>
<td>same as above</td>
<td>yes, few secs</td>
</tr>
<tr>
<td>interactive games</td>
<td>loss-tolerant</td>
<td>few kbps up</td>
<td>yes, 100’s msec</td>
</tr>
<tr>
<td>instant messaging</td>
<td>no loss</td>
<td>elastic</td>
<td>yes and no</td>
</tr>
</tbody>
</table>
Internet transport protocols services

TCP service:
- *connection-oriented:* setup required between client and server processes
- *reliable transport* between sending and receiving process
- *flow control:* sender won’t overwhelm receiver
- *congestion control:* throttle sender when network overloaded
- *does not provide:* timing, minimum throughput guarantees, security

UDP service:
- unreliable data transfer between sending and receiving process
- does not provide: connection setup, reliability, flow control, congestion control, timing, throughput guarantee, or security

Q: why bother? Why is there a UDP?
<table>
<thead>
<tr>
<th>Application</th>
<th>Application layer protocol</th>
<th>Underlying transport protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-mail</td>
<td>SMTP [RFC 2821]</td>
<td>TCP</td>
</tr>
<tr>
<td>remote terminal access</td>
<td>Telnet [RFC 854]</td>
<td>TCP</td>
</tr>
<tr>
<td>Web</td>
<td>HTTP [RFC 2616]</td>
<td>TCP</td>
</tr>
<tr>
<td>file transfer</td>
<td>FTP [RFC 959]</td>
<td>TCP</td>
</tr>
<tr>
<td>streaming multimedia</td>
<td>HTTP (eg Youtube), RTP [RFC 1889]</td>
<td>TCP or UDP</td>
</tr>
<tr>
<td>Internet telephony</td>
<td>SIP, RTP, proprietary (e.g., Skype)</td>
<td>typically UDP</td>
</tr>
</tbody>
</table>
Multimedia Backbone Design: Loss Protection & Failure Restoration

Based on work with

Robert Doverspike, Guangzhi Li, Kostas Oikonomou, K. K. Ramakrishnan, Rakesh Sinha and Dongmei Wang

AT&T Labs Research, NJ
IPTV Network – Example End-to-End Flow

Content Providers

A-server

National Feed: each channel encrypted over 1 Multicast (PIM) group

SHO

Intermediate Metro

VHO

OC-48/192 or 10GE

VoD-server

D-server

Local content added to national feed via existing multicast groups

VoD

Back office Systems, DBs

Metro VHO

DSLAM and Serving Office only multicasts channels in use downstream (via IGMP)

Access Metro

Residential Gateway (RG)

Residence

Set-top Box (STB)

Access Metro

DSLAM

FTTC

GPON

Backbone

Metro Backbone

P-MP Video Stream

P-P Flows (Unicast)

1 or 10 GE/Fiber

VDSL/Copper

R = Router; E = Ethernet Switch; R/E = Hybrid
GPON = Gigabit Passive Optical Network
SHO = Super Hub Office; VHO = Video Hub Office
IGMP = Internet Group Management Protocol

R = Router; E = Ethernet Switch; R/E = Hybrid
GPON = Gigabit Passive Optical Network
SHO = Super Hub Office; VHO = Video Hub Office
IGMP = Internet Group Management Protocol
Content Reception and Distribution

Content Reception
- Receive signal transmitted by content producers
- Video encoded using H.264/AVC encoders
- SD Encoded at 2.1 Mbps with a target of 1.8 Mbps or lower
- HD Encoded rate targeted for ~8Mbps or less

Acquisition Servers (A-Server) at both SHO and VHO locations
- Encrypts Video and adds DRM
- Inserts Metadata

Distribution Servers (D-Server) at VHO locations
- Packet Resiliency/Error Correction
- Support Instant Channel Change

VoD Servers (V-Server)
- Store encoded and encrypted copies of VoD Movies
Content Acquisition subsystem (A-servers).
- Packages H.264 encoded stream as Real Time Protocol (RTP) streams.
- RTP streams are encapsulated as UDP packets and sent over IP-multicast tree
- Also generates a PIP stream for each live TV channel.

RTP: end-to-end network transport functions for real-time data

RTP functions:
- end-end delivery; payload type identification
- sequence numbering (allows receiver to reconstruct sequence)
- timestamping and delivery monitoring

RTP typically runs on top of UDP to use its multiplexing (by port number) and checksum services.

RTCP: RTP Control Protocol allows monitoring of data delivery
- RTCP packets periodically sent from receivers to provide “reception reports”
Digital Subscriber Loop Technology: ADSL and VDSL

xDSL services are dedicated, pt-to-pt, public network access over twisted-pair copper wire on the local loop ("last mile")

ADSL modem on each end of twisted-pair telephone line

- three information channels
 - high-speed downstream channel: 6.1 Mbps (@ 9K ft); 1.5 Mbps (@18Kft)
 - from service provider’s central office to the customer
 - medium-speed duplex channel: up to 640 kbps
 - basic telephone service channel: is split off from digital modem by filters

VDSL transmits high-speed data over short reach copper

- VDSL part of the FTTN topology for high speed services
 - fiber feeding neighborhood optical network units (ONUs) and last-leg connections by copper wire
- range of speeds also depend on actual line length
- Max. downstream rate: 51-55 Mbps @1K ft, 13 Mbps@ 4Kft.
- Upstream rates: 1.6 - 2.3 Mbps
Potential for Packet losses

Packet loss can occur due to noise on the channel and home network

- A variety of technologies may be supported within the home
 - Twisted pair Ethernet, HPNA, wireless

VDSL has FEC with sufficient interleaving to correct errors created by impulse noise events

- Reed Solomon coding; Interleaving introduces delay; FEC overhead ~8%
- Target packet loss in the VDSL loop and home < 0.1%
- Not always easy to achieve, especially with varying home network technologies
Packet loss in the end-end path may occur for a variety of reasons:

- Loss in the backbone and metro network (bit errors, congestion, link or node failures)
- Loss in the last mile (e.g., VDSL, cable plant)
- Loss in the home network

TCP with *reliable, flow-controlled, in-order* delivery semantics may be overkill

- Mismatched with application requirements for tight latency and jitter

People have been proposing a datagram transport that can meet the needs of real-time applications that can also provide some bound on extent of packet loss, while meeting latency requirements

- Reliable UDP has been proposed as one such protocol enhancement to UDP

Reliable UDP (R-UDP) is used to resend missing packets

- In the backbone, retransmission requests are uni-cast from VHO (D-server) to SHO and repair packets are unicast from SHO to VHO
- In the metro region: retransmission requests and repair packets are uni-cast between D-server and STB

Client behavior for R-UDP: when STB observes a missing packet

- Reports the dropped packet to the D-server. The D-server then resends the dropped packet.
Details for R-UDP at the Client

Client has up to some deadline (e.g., 1 second) to recover any lost packets. Any packets recovered beyond this time may be useless.

- Deadline determined by the size of the playout buffer/point

The client retry protocol should not report missing packets immediately, since packets may be reordered during delivery.

- Client periodically analyzes what holes it currently has in the RTP stream
- Reports all or a subset of those holes to the D-Server.
- The D-Server examines the report and resends missing packets.

D-server has to first recover any packets lost in the backbone from the A-server.
Retransmission Strategy in the Backbone

- The servers (both the A-server and D-server) have to keep packets (history) around for retransmission.
- Each VHO (D-server) requests retransmission to fill holes observed.
- Retransmissions for loss observed by each VHO is typically treated independently.

Unicast retransmissions use considerable backbone capacity:
- Even when link failures are restored by local Fast Re-route in 50 ms.
 - Especially when failure occurs “high-up” in the multicast distribution tree.

Multicast based R-UDP Recovery is very useful to reduce bandwidth requirements for loss recovery.
Streamline R-UDP Recovery in Backbone with Multicast

Servers at the SHO use the multicast tree for transmitting R-UDP packets.

- Server reacts to the first R-UDP request for a packet and then suppresses the remaining requests for a period

Multicast R-UDP to gain Efficiency under correlated losses

- Significant reduction in bandwidth consumption on the link from the SHO to the backbone and on subsequent downstream backbone links, and/or a reduction in the number of failed retries compared to unicast.
- Reduces the processing load on the A-Server
- With multicast R-UDP, the retransmit bandwidth consumption along the backbone is below a constant factor
- Unsolicited retransmits must be discarded in the multicast receivers in the VHOs.

This approach removes possibility of R-UDP traffic storm on the backbone

- estimated overhead of about 5% assuming link failure can be recovered in 50 msecs
Decoupled R-UDP loops

- Multicast only to overcome failures on backbone

Servers (SHO and VHO) support multicast R-UDP packet recovery

Broad long-term strategy for making IPTv distribution more robust:

- Multicast based recovery of residual losses
- FEC from SHO server/VHO server to Set-top Box
- Improved Loss Concealment strategies in media player
Packet Level Forward Error Correction (FEC)

Physical layer FEC uses Reed-Solomon or Trellis codes for correcting random errors and short bursts.

Higher level: Packet level FEC uses packet erasure (loss) correction.

Basically sending extra “repair” packets after sending a block of data packets.

Each repair packet contains XOR of a subset of data packets.

Block of data can be recovered if a few more packets than the number of original data packets are received from the combined set.

Extra bandwidth required ~equal to the maximum packet loss to be protected against.

Fixed bandwidth requirement – works well for multicast and unicast.

Can be used to recover from long outages (~200ms) by choosing a larger source block size.

• Adds considerable latency.
Pro MPEG Forum CoP3 1D FEC

Good For Low Random Loss Due To BER

- Source block composed of LxD source packets numbered in sending order
 - \(L \times D \leq 100 \)
 - \(1 \leq L \leq 20 \)
 - \(4 \leq D \leq 20 \)

- Each repair packet is the XOR of the packets in a column

- Overhead = \(\frac{L}{L \times D} \)
- 5% Overhead for \(L = D = 20 \)
Pro MPEG Forum CoP3 2D FEC
Good For High Random Loss Due to BER

- Source block composed of LxD source packets
- Repair packets calculated across rows as well as columns
- XOR Function Used to create repair packets
- Overhead = \((L + D) / (L \times D)\)

L columns

D rows

\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 & 11 \\
12 & 13 & 14 & 15 & 16 & 17 \\
18 & 19 & 20 & 21 & 22 & 23 \\
24 & 25 & 26 & 27 & 28 & 29 \\
30 & 31 & 32 & 33 & 34 & 35 \\
\end{array}

\rightarrow \begin{array}{c}
F’0 \\
F’1 \\
F’2 \\
F’3 \\
F’4 \\
F’5 \\
\end{array}

\text{repair (parity) packets}
Multimedia Distribution over IP Backbones

Media distribution requires significant capacity

- With ever-increasing number of multimedia streams to be carried over the backbone: large requirement on capacity
 - Over 70% of raw link capacity is needed

System typically organized as:

- a small set of centralized content acquisition sites (head-ends);
- large number of media distribution sites in metropolitan cities;
 - Redundant set of routers and a number of servers at distribution sites
- a metro and neighborhood area network to reach the home

Use IP Multicast

- Using PIM (source specific mode or dense mode) on routers for forwarding
 - Tree from source to receivers – on a per “channel” basis for ‘linear TV’
- Typically a group extends all the way to the consumer

Links carry other types of traffic as well
Typical Media Distribution Framework

- Each media distribution site:
 - Distribution servers as well as links have capacity constraints
 - Potentially large number of distribution servers at each distribution center
 - Failures (of links, routers, line cards, servers) will be the norm
 - Need to be handled efficiently
Typical IP Backbone

- Nationwide Distribution
 - Large scale
 - Large number of routers and distribution servers at each metro area distribution center
 - Backbone routers connected via bi-directional IP links form multimedia IP backbone
Real-Time Broadcast-Quality Media Distribution: Restoration Issues

Stringent requirements on packet loss and number of impairments that can be tolerated

- ITU requirements for packet loss for video distribution: less than 10^{-8}

What can we do in the backbone to relieve pressure on other packet loss recovery mechanisms?

Issues/Requirements for IP Backbone restoration:

- Multiple failures in a long distance backbone network are not rare:
 - Multiple failures: over underlying WDM and fiber spans (when not sufficiently diverse)
 - Need to consider them in a comprehensive manner
- Fast restoration is desirable
- No congestion during restoration

Environment and Assumptions:

- Network unicast routing protocol: OSPF
- Network multicast routing protocol: PIM-SSM
- Restoration process will be eventually carried out and reflected at the IP layer
Failure Detection and Recovery

Detection (Link Layer)

- **SONET:** alarms
- **BFD:** Bidirectional Failure Detection
 - Lightweight Hello protocol built on UDP/IP

Quick failure detection possible with OSPF; But...

Recovery

- **OSPF:** Convergence to new topology can take up to 10 seconds (not uncommon)
 - Large IP backbone tends to have parameters set conservatively
 - PIM-SSM /DM multicast tree converges subsequently
- **Link-Based Fast Reroute**
 - Locally reroute around link failures ("link protection")
 - Can take 10’s of milliseconds
 - Failures become transparent to IP/OSPF perspective
Example of Fast Reroute backup paths

MPLS secondary LSP tunnel

MPLS next-hop backup path

PHY layer links

MPLS primary LSP tunnels

MPLS next-next-hop backup paths

Example of Fast Reroute backup paths
Simple Network Example

- Router-router links (L3 adjacencies) are weighted to work with OSPF and other shortest path protocols.
- Links are assigned low weights or high weights to control design of the multicast tree (which is generated from the OSPF or IS-IS shortest path tree).
- Alternate links are provided for restoration and link weights are also used to control restoration.
Local Link-Based Fast Re-Route Mechanism

Normal traffic forwarded on primary link

When primary link fails, link layer mechanism using FRR switches to backup

No OSPF/PIM-SSM convergence required

“Virtual link” between AB with virtual interfaces

Virtual link consists of both a primary and backup

Path: The OSPF topology (and multicast tree) built on top of the virtual link

• Each link pre-selects a diverse backup path to create a virtual link
• Upon link/interface failure, traffic is rerouted to backup path if the backup is available
Example of Restoration Methodology

To meet 50ms target for single L1 failures or distant dual L1 failures

• A pseudo-wire is defined between the endpoints of each low-weight link in the direction of the multicast tree in the non-failure state (1-hop MPLS path).

• The long distance network is conceptually divided into subnetworks. A given metro network is generally configured as one subnetwork

• A secondary MPLS (back-up path) is explicitly routed over a diverse path within its subnetwork; backup paths from different subnetworks do not overlap

• High weight links are placed to serve as links of backup paths. High-weight links do not have backup paths

• If only one low-weight link fails
 – Traffic is rerouted via to the backup path via MPLS forwarding & OSPF LSAs are broadcast for underlying L3 topology
 – However, the Pseudowire is still active and thus OSPF still sees the PW link as “up” and thus routing tables are unchanged

![Diagram of network restoration](image)
Example of Restoration Methodology

Multiple Failures

- If two low-weight links fail
 - The associated PWs are failed and OSPF sends out “link down” messages
 - OSPF seeks alternate paths, possibly using the high-weight links

- If link bandwidth is limited, requires careful networks design for complex combinations of above (e.g., node failure in one subnetwork and single link-failure in another)
 - The backup-path may be active in one subnetwork, yet OSPF reroutes in another subnetwork, possibly (unknowingly) overlapping with backup path

![Diagram of multicast tree after double failure and subsequent OSPF reconvergence](image-url)
Setting OSPF weights to avoid traffic overlap

- **Traffic** forwarded using shortest path multicast tree (SSM)
- **Link weights** are set up intelligently so that:
 - Congestion on the link will likely result in loss and prolonged user-perceived impairment
 - Traffic of a backup path and the traffic of multicast tree do not use the same direction along a common link (backup shouldn’t overlap with the primary)
Algorithm to Set Link Weights

Assumption:
- given a directed network topology with nodes at least 2-connected.

Objective:
- Separate the links into two classes: high and low cost links
- The low cost links form a multicast tree
- Each low cost link on the tree should have a backup path, which does not overlap with the multicast tree.
Details of the Link Weight Setting Algorithm

Steps:

1. Starting from the source, find a series of links to form a ring.

2. Set a link adjacent to the source as high cost, other links on the ring with low cost. All links with weights form graph G.

3. From the remaining links, find a series of links, which form a path with two ends of the path (A,Z) staying on G.

4. Set the first or last link from A to Z on the new path as high cost and other links as low cost.

5. All links with weights form the new graph G. Repeat the step 3~5 until all links are assigned link weights.
Example

Steps:
1: select ring S-1-5-6-2
3: select path 1-3-5
4: select path 2-8-6
5: select path 3-4-6
6: select path 5-7-8

- After the link weights are set, the low cost links form the multicast tree from S in the undirected graph
- Each of these edges is a pair of directed edges
- Set the weights of the directed edges along multicast tree to ∞ and others to 1.
- Use SPF to generate backup paths for all directed edges along the multicast tree
- Details and proof in the paper
Primary and Backup Paths on Backbone Network

- **High cost link**
- **Backup path**
Backbone Restoration Approaches

Alternative 1: Based on IGP Re-convergence only

- OSPF convergence after a failure
- PIM Multicast tree reconfigures
 - Service hit can be long (driven by OSPF and timers)

Alternative 2: Local Fast Reroute (FRR)

- Each link configured with one backup path; traffic switches to backup path via local FRR upon link failure
 - No OSPF/multicast tree convergence
 - Less than 50ms recovery

Alternative 3: FRR on failure only until OSPF/PIM reconverge

- Local FRR is utilized only during OSPF convergence period
- Switch from old multicast tree to new multicast tree afterwards
Alternative 3 Details: Cross Layer Awareness

Use local fast reroute for restoration of failure; switch to new layer-3 route after OSPF recovers

- Upon a link failure, initiate the Local Fast Re-route to use the backup path
- However, allow the link failure to be reflected at the IP layer (OSPF) by setting a high cost for the backup path

During OSPF re-convergence process, the backup path is still used for the original tree.

After OSPF convergence, the multicast routing protocol reconfigures the SSM multicast tree

Then use the new multicast tree

Similar to RFC 2362 “make-before-break”

- the last hop router of each MD issues a join towards the source along the new shortest path to generate a new tree.
- The data packets start to flow on the new shortest path tree
- The receiving router of the backup path prunes the original tree after receiving packets on the new shortest path tree.
- We now are no longer using the backup path
 - Minimizes the potential for congestion during the repair interval
Potential for Congestion with Multiple Failures

- Even with proper weight setting, multiple concurrent failures may result in congestion
- Alternative 3 improves this situation by using the backup paths only for a short period
 - Backup paths are utilized only until OSPF reconverges and multicast tree is reconfigured
Performability Analysis

We have developed a tool called “nperf”

nperf evaluates the combined performance and reliability (performability) of networks.

- **Usually they are analyzed separately, by different tools.**

- **Reasons for Performability Analysis:**
 - Performance: get the performance in the “perfect” state of the network.
 - Reliability: shows that the network structure is “OK” – but not enough to ensure good performance.

- **Performability**: see the performance in all possible network states (failure scenarios), including multiple simultaneous failures.
 - Understand even the penalty of rare, but high-impact events
Performance under failure conditions

Designing a network for good performance in the absence of failures better understood.

- Usual approach when there is limited extra capacity:
 - look at a selected set of single (and maybe double) failures; patch the design to tolerate specific failures.

nperf
- *Systematically* explores as much of the failure space as possible,
- Finds *bounds* on the performance metrics on the unexplored part of the space,
- *Ranks* the failure scenarios according to importance.

In every network state **nperf** computes two main metrics:

- **Traffic lost because of no route,**
- **Traffic lost because of congestion.**
- **Computes average (expected loss), and probability distribution**
• Significant downtime across all the nodes (MDs) with Alternative 2 (FRR)
 • The time is dominated by the time period for repair
• Alternative 1 also has a lot less downtime than Alternative 2
• Alternative 3 improves the situation substantially – in many cases, downtime is negligible
• The number of service impacting events is highest with Alternative 1.
• OSPF re-convergence and multicast tree reconfiguration more frequent
• Substantial improvement in the number of service impacting events with Alternative 2 (local FRR) and Alternative 3
Multiple Failures

None of the existing approaches can reasonably handle multiple failures.

- Multiple failures can cause FRR traffic to overlap.
- PIM must be informed about the failures and should switchover to the new tree as soon as it is possible.
 - So that overlaps due to multiple failures are minimized.

No single failure causes an overlap. But a double failure does..

Multicast source

Old tree before failures

FRR path for 1-3

FRR path for 1-2
Our Approach: FRR + IGP + PIM

Key contributions of our approach:

- It guarantees reception of all data packets even after a failure (except the packets in transit) – hitless
- It can be initiated when a failure is detected locally by the router and does not have to wait until routing has converged network-wide – works with local rules
- It works even if the new upstream router is one of the current downstream routers – prevents loops during switchover
IGP-aware PIM: Key Ideas

Our key ideas as “local” rules for routers:

Rule #1: Expose link failure to IGP routing even if FRR backup path is in use.

Rule #2: Notify multicast protocol that IGP routing has changed so that it can reconfigure whenever possible.

- PIM will evaluate and see if any of its (S,G) upstream nodes has changed. If so, it will try sending a join to the new upstream node. Two possibilities:
 - #2.a New upstream node is NOT among current downstream nodes → Just send the join immediately.
 - #2.b New upstream node is among current downstream nodes → Move this (S,G) into “pending join” state by marking a binary flag.
- Do not remove the old upstream node’s state info yet.

Rule #3: Prune the old upstream only after data arrives on the new tree.

- Send prune to the old upstream node when you receive a data packet from the new upstream node.
- Remove the old upstream node’s state info.

Rule #4: Exit from the transient “pending join” state upon prune reception.

- When a prune arrives from a (currently downstream) node on which there is a “pending join”, then:
 - Execute the prune normally.
 - Send the joins for all (S,G)s that have been “waiting-to-send-join” on the sender of the prune.

Very minimal additional multicast state.
IGP-aware PIM Switchover: A sample scenario, No FRR yet

Node 4:
- detects the routing change after SPF and tries to send a join message to 2 (#2)
 - moves to “pending join” state (#2.b)

Node 2:
- hears about the failure via IGP announcements and does SPF
- detects the routing change after SPF and tries to send a join message to 1 (#2)
 - sends the join to 1 (#2.a)
 - but does not install the 2→1 interface yet

Node 1:
- receives the join message from 2
- adds the 1→2 downstream interface and data starts flowing onto the new tree

Node 2:
- receives data packets from new tree and sends a prune to old upstream node (#3)

Node 4:
- receives prune from 2 and moves out of “pending join” state by sending the join to 2 (#4)
- processes the received prune

Node 2:
- receives the join message from 4
- adds the 2→4 downstream interface and data starts flowing onto the new tree
FRR Support → Congested Common Link

- When there is FRR support, common links (i.e., overlaps) may happen.
- **Common Link (CL):**
 - During a switchover, the new tree might overlap with the FRR path of the link that failed.

Issue: Congested Common Link
- CL might experience congestion and data packets on the new tree (blue) might never arrive at node 4

Solution: Allow CLs, but prioritize the traffic on the new tree
- After link failure, mark the data traffic on the new tree with a higher priority and FRR packets with lower priority.
Summary

Protection and Restoration approaches for an IP backbone must understand the impact of failures and the interactions *across the protocol layers*

Restoration approaches in an IP backbone used for multimedia distribution have to be carefully designed

• To maintain user perceived quality

We look at combination of network design and restoration algorithms to

• ensure fast restoration to minimize impact of failure events
• avoid congestion during multiple failures, because
 – Multiple failures have high impact
 – Repair times can be significant

nperf – tool to comprehensively analyze performance and reliability of network for *all* failure events

We use a combination of a local fast-reroute mechanism (for quick restoration) and switching to the multicast tree based on the new topology (to avoid congestion in the event of subsequent failure).
Proactive Network Management for the production IPTv System
Our approach

• Be proactive in dealing with the effect of multiple failures.
• Maintenance activity is often planned far in advance and is often agnostic to real-time network state.
 • We coordinate planned network maintenance activity with real-time network state.
• Need a comprehensive view across many different network layers.
 • Example (details later): an SNMP based tool can tell when a link is congested but by looking at a variety of data sources, we can pinpoint to one of 3 or 4 different reasons for link congestion.
Dealing w/ Network component failures

• (Reactive) Use FRR whenever backup path is available; Use IGP otherwise. There is potential for congestion with multiple failures
 • overlap of two FRR paths, OR
 • overlap of FRR path with multicast tree.
• (Proactive) Avoid potential overlap by using a cross-layer approach to reconfigure the multicast tree after a successful FRR event. [COMSNETS 2010]

Another issue: Alert the operator to any changes in network state. E.g,

• An FRR event may reroute traffic to a different set of links
• A PIM re-convergence may alter the multicast tree
Dealing w/ Network maintenance

- Maintenance activity is often planned far in advance and is often agnostic to real-time network state

- Coordinate planned network maintenance activity with real-time network state.

- Examples:
 - any link carrying traffic should not have a maintenance activity
 - IPTV networks are typically shared as an access network providing Internet connectivity to customers and a pair of routers within a metro office maintain BGP sessions with ISP edge routers. If one of these BGP sessions is down, its ‘mate’ router should not be touched.
Pinpoint the cause of link congestion

- An SNMP based tool can point out which links are congested. However knowing the underlying cause can for congestion gives an insight in how to fix it.
- Holistic view needed to disambiguate cause
- Different ways that a link can get congested
 - Oversubscribed? Too many TV channels/VoD
 - Overlap between different FRR paths and/or multicast tree
 - Lots of parallel links between offices and sometimes we can get load imbalance: high bandwidth channels on one link and low bandwidth channels on the other link.
Web based visualization tool: Birdseye

Synthesizes and interprets data from a variety of data sources to obtain a comprehensive network view. Our overall philosophy is to

- Maintain an idealized, failure-free state
 - List of links and routers, link capacities, multicast tree, FRR backup paths, etc.

- Maintain real-time state
 - Real-time topology, link utilization, BGP reachability, database of links planned for scheduled maintenance
 - Either directly from tools or by interpreting data from multiple tools.

- Parse the differences and show necessary alerts to the operator

- Has been in use in AT&T Network Operations Center for 1+ yr.
Data Sources

- NetDB tool (developed at AT&T Research): parses router configuration files to build failure-free topology
- OSPFMon tool (developed at AT&T Research): establishes a partial adjacency with one or more routers to receive LSAs and create a real-time topology
- FRR is invisible to IGP and may appear self-healing but it alters the network state significantly
 - Need logic to infer that successful FRR has happened
 - Use NetDB to get links in the back-up path being used
- MRTG tool: collects link utilizations
- BGP reachability: compare number of routes to a threshold; also monitor various alarms
- Operations Support System: list of links scheduled to undergo maintenance during the next 24 hours.
Sample GUI snapshot: triple link failure

TO PROTECT PROPRIETARY INFORMATION THIS DOES NOT DEPICT AN ACTUAL NETWORK OR OUTAGE
Sample snapshot: updated multicast tree

TO PROTECT PROPRIETARY INFORMATION THIS DOES NOT DEPICT AN ACTUAL NETWORK OR OUTAGE
Summary

- IPTV services have high sensitivity to impairments and high visibility in terms of customer impact
- Need careful designing of network protocols to deal with multiple failures
- Operators need a comprehensive view of the network
- Our Birdseye tool distills network data from multiple AT&T-developed systems and public tools and domain knowledge of networking protocols to compile a holistic view to the operators
- Has been in use at Network Operation Center for over a year for a service with 2+ million customers
Scalability Issues for Live Broadcast Television Distribution

Module 6

K. K. Ramakrishnan

AT&T Labs Research, NJ
“Instant Channel Change”

When a user requests a new channel, the STB has to eventually join the multicast group for the new channel.

Native IP multicast for IPTV through IGMP join and leave has to complete:
- but “joins” take only a few milliseconds, so what is the problem?

Channel changes in packetized environment are relatively slow because:
- STB has to wait for an I-frame and start buffering from that point.
- Requires pre-buffering up to playout point before playing live video.

The buffering of video in the playout buffer up to a “threshold” (1-2-3 seconds (configurable)) implies playout of live content needs to catch-up:
- Playout buffer threshold (playout point) set conservatively to allow for recovery of lost packets – e.g., using R-UDP.
- May be main source of “jitter”, especially with lossy links.

Instant channel change mechanisms have generally used an initial speed up for delivery of video to STB.

Unicast Channel Change

D-Server caches video frames in a circular buffer

On receiving a channel change request, D-Server unicasts cached video frames, starting with an I-frame
- D-server transmits at an accelerated rate

When D-server has sent all the content in its buffer, the client STB has very likely caught up to the "live" stream
- Client issues a join, and D-server only multicasts new data at nominal bit-rate

Unicast lasts for a “fixed” time interval

The mechanism is based on channel change events being relatively uncorrelated

Simple optimization is to make this dynamic
- Wait for client playout buffer to fill up to playout threshold
- Switch to multicast
1. Customer changes from channel \(m \) to \(n \)

2. STB sends ICC request for channel \(n \) directly to D-server

3. DSLAM forwards all ICC packets directly between IP address of STB and D-server.

4. D-server receives ICC request & transmits (unicast) sped-up channel \(n \) to STB for \(X \) seconds

5. If customer watches channel \(n \) for \(> X - \epsilon \) secs, STB sends IGMP “leave” and “join” packets to the IO router

6. DSLAM snoops packets for IGMP messages and updates its IGMP table for each STB (drop \(m \), add \(n \)). If already receiving channel \(n \) from VSO, it replicates to STB on its private VLAN, else it forwards IGMP request to VSO (+ serves as proxy for reports & queries)

7. VSO does similar IGMP snooping as in DSLAM (+ “fast leaves” & serves as proxy for reports & queries)

ICC unicast flows
IGMP leave/join messages
Multicast TV channels
Enhanced Unicast ICC operation

VHO: Video Head End
IO: Metro Network Routers
CO: Central Office
DSLAM
STB: Set Top Box

Bandwidth and Scalability Concerns:
Bandwidth requirement and queueing at bottleneck links between D-server and STB

- Increases with number of end users (changing channels concurrently) increases
- When a number of users need to be served by the single channel: server capacity limits (typically few servers to stream a given channel)
Difficulties with the Unicast ICC

- Unicast ICC reduces channel change time, but comes at a cost
- When there are concurrent ICC requests, there is a substantial load on the network,
 - especially on the link between the DSLAM and the CO, which normally acts as a bottleneck link.
- D-Server also has to support large number of unicast streams
 - Each D-Server has a given I/O capacity that it can handle
- When a number of users need to be served by the same channel: server capacity limits
 - Server may be assigned on a per-channel basis, incurring further cost for the service provider
Multicast ICC

Goals for Channel Change mechanism

- Depend solely on multicast and eliminate uni-cast traffic
- Scale (relatively) independent of number of subscribers
- Scale independent of number of concurrent channel change requests to a given channel

Multiple proposals for achieving pure multicast ICC

Our proposal’s tradeoff: Compromise on the quality of the video delivered during the channel change period

Create a parallel lower bandwidth channel-change stream

- Extracting only I-Frames from the multicast stream

When user requests a channel change

- Multicast join immediately issued for both the primary full-quality multicast stream and secondary channel-change stream
Our Multicast ICC approach

VHO: Video Head End
IO: Intermediate Office
CO: Central Office
DSLAM
STB: Set Top Box

Join issued
Multicast Stream
Sec. Multicast stream (I-Frame stream)
Multicast ICC Benefits

Multicast ICC scheme performance is independent of:

- Increase in the rate of channel change requests from users
- Increase in the rate of channel change requests for a particular channel

Lower bandwidth (server and links) consumption even during flash crowds of channel changes,

Lower display (first-frame) latency (50% lower), and lower variability of network & server load.

Tradeoff is a lower quality (less than full-motion) video being displayed during the playout buffering period (2-3 seconds)
Video Distribution: P2P and Hybrid Systems

K.K. Ramakrishnan
AT&T Labs Research, NJ USA

ITC-2011 (portions borrowed from slides for the book by Jim Kurose and Keith Ross)
Client-server architecture

server:
- always-on host
- permanent IP address
- server farms for scaling

clients:
- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other
Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

highly scalable but difficult to manage
Hybrid of client-server and P2P

Skype
- voice-over-IP P2P application
- centralized server: finding address of remote party:
- client-client connection: direct (not through server)

Instant messaging
- chatting between two users is P2P
- centralized service: client presence detection/location
 - user registers its IP address with central server when it comes online
 - user contacts central server to find IP addresses of buddies
Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

Three topics:
- file distribution
- searching for information
- case Study: Skype
Question: How much time to distribute file from one server to N peers?

- u_s: server upload bandwidth
- u_i: peer i upload bandwidth
- d_i: peer i download bandwidth

Network (with abundant bandwidth)

File, size F
File distribution time: server-client

- server sequentially sends N copies:
 - NF/u_s time
- client i takes F/d_i time to download

Time to distribute F to N clients using client/server approach:

$$d_{cs} = \max \{ NF/u_s, F/min(d_i) \}$$

increases linearly in N (for large N)
File distribution time: P2P

- server must send one copy: F/u_s time
- client i takes F/d_i time to download
- NF bits must be downloaded (aggregate)
 - fastest possible upload rate: $u_s + \sum u_i$

$$d_{P2P} = \max \{ F/u_s, F/min(d_i), NF/(u_s + \sum u_i) \}$$
Server-client vs. P2P: example

Client upload rate = u, $F/u = 1$ hour, $u_s = 10u$, $d_{\text{min}} \geq u_s$
File distribution: BitTorrent

P2P file distribution

tracker: tracks peers participating in torrent

torrent: group of peers exchanging chunks of a file

peer

trading chunks

obtain list of peers
BitTorrent (1)

- file divided into 256KB chunks.
- peer joining torrent:
 - has no chunks, but will accumulate them over time
 - registers with tracker to get list of peers, connects to subset of peers (“neighbors”)
- while downloading, peer uploads chunks to other peers.
- peers may come and go
- once peer has entire file, it may (selfishly) leave or (altruistcally) remain
BitTorrent (2)

Pulling Chunks
- at any given time, different peers have different subsets of file chunks
- periodically, a peer (Alice) asks each neighbor for list of chunks that they have.
- Alice sends requests for her missing chunks
 - rarest first

Sending Chunks: tit-for-tat
- Alice sends chunks to four neighbors currently sending her chunks at the highest rate
 - re-evaluate top 4 every 10 secs
- every 30 secs: randomly select another peer, starts sending chunks
 - newly chosen peer may join top 4
 - “optimistically unchoke”
How BitTorrent Works

1. Publish torrent file in the tracker (infohash)
2. Publish torrent file with its username
3. Get torrent file from the portal
4. Get IP addresses of peers from Tracker (infohash)

BitTorrent Portal
Tracker

Publisher

= Initial Seeder

Content

OpenBitTorrent
SWARM
BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate, can find better trading partners & get file faster!
P2P Case study: Skype

- inherently P2P: pairs of users communicate.
- proprietary application-layer protocol (inferred via reverse engineering)
- hierarchical overlay with SNs
- Index maps usernames to IP addresses; distributed over SNs
Peers as relays

- problem when both Alice and Bob are behind "NATs".
 - NAT prevents an outside peer from initiating a call to insider peer

- solution:
 - using Alice’s and Bob’s SNs, *relay* is chosen
 - each peer initiates session with relay.
 - peers can now communicate through NATs via relay
CPM: Adaptive VoD with Cooperative Peer Assists and Multicast

Vijay Gopalakrishnan, Bobby Bhattacharjee, K. K. Ramakrishnan, Rittwik Jana and Divesh Srivastava
Growth in On-Demand Viewing

On-Demand will be the predominant mode for TV viewing
- Broadcast of news and live-events only

Viewers want flexible choices, at good quality
- *What we want*
 - e.g., “I want to watch *Numbers*”
- *When we want*
 - e.g., “I want to watch the show after dinner”
- *How we want*
 - e.g., TV at home, Computer at work, handheld on the way to work, etc.

With IP based delivery, this will become the norm
- Service providers will have to evolve their delivery mechanisms
IP-based distribution in a Metro Area

Today’s approach does not scale!
Available approaches

• Unicast from a server
 - Can provide quick startup to a user request
 - Insensitive to request inter-arrival time
 - Rare content is easy to serve
 - Can adapt quality to individual user’s B/W availability

• Peer-to-peer between user devices
 - Reduce server traffic by downloading from nearby peers
 • Providers benefit
 - Potential to decrease content download times
 • users benefit

• Multicast content to large number of consumers
 - Server load independent of popularity of video
 - Reduces network B/W even with large set of concurrent users
Dimensions to optimize

- Unicast
- Peer-to-Peer
- Multicast
Our Approach for Video-on-Demand

Goal: Adaptability and Flexibility

- Good user experience
 - Fast start (even for rare content)
 - Absence of disruptions or glitches
- Cost effective to service providers
 - Minimize server and network costs
 - One solution \implies one deployment \implies reduced costs

CPM: Unified approach to provide efficient VoD

- Multicast from server
- Peer-to-peer that is topology aware
- Caching at the clients using pre-population
- Server unicast if needed
Overview

• Motivation

• Our Contribution: CPM
 – Data Model
 – Protocol Description

• Evaluation
 – Trace Driven Analysis
 – Parameter Sweep

• Summary
Data Model

- Video consists of sequence of segments, each consisting of ‘chunks’
 - Chunks are the smallest addressable unit

- Chunks are relatively small (~30 secs.)
 - Typical viewing size of small videos
 - Amortization of overheads
 - Resilience to download failures from a serving node

- Client provided with a “play file”
 - Play file downloaded from origin server
 - Identifies the chunks (using ID) that constitute video
 - Can merge chunks from multiple videos (e.g., mashups, ads)

- Client requests chunks following the play file
Data model at work

Chunks requested by client

Video 1

Segment 2

Play File downloaded to Client

Chunks requested by client

Video 2 (e.g., Ad)
Entities in CPM

Clients:
- Search for K chunks at a time
 - specifies chunk’s current “deadline”
 - decision performed on each individual chunk, dynamically identifying source
- Store and serve chunks to other peers
 - Chunks may be pre-populated or downloaded

Servers:
- Stores all the videos as chunks
- Aggregates requests for chunks based on deadline for multicast
- Can decide whether to use unicast or multicast

Directory server (Tracker):
- Stores a map of chunks to peers
 - clients register/de-register with the server for each stored chunk
- Provides list of peers
 - can be made “network friendly”
CPM: How does it work?

Client dynamically identifies best source for each chunk, in order
Client downloads chunk from the best source
Client requests for a video
Server responds with a playfile with a list of chunks in the video

Diagram:
- Video Servers
- Directory Server
- PlayFile
 - Chunk1
 - Chunk2
 - Chunk3
 - Chunk4
 - ...

Client dynamically selects playfiles for each chunk in the video
Identifying best source for a chunk

Client
- Check Cache
- Probe Request

Video Server
- Try to join existing Multicast group
- Probe Response

Directory Server
- Respond w/Peers

Peers
- Request for Peers
- Respond w/Peers
- Request Chunks
- Chunk Transfer/NAK

Time
- If no multicast group at server

Chunk Request
- If no peers or capacity unavailable

Chunk Transfer
- Try peer transfer
Overview

• Motivation

• Our Contribution: CPM
 – Data Model
 – Protocol Description

• Evaluation
 – Trace Driven Analysis
 – Parameter Sweep

• Summary
Evaluation using VOD traces

• Evaluated using discrete-event simulator
 – Based on modified proof-of-concept implementation.

• Traces from > 100K active VoD clients for 1 week
 – Approximately 369K requests to 2600 videos
 – 60% requests to ~9% of videos

• Compare unicast, idealized P2P and CPM
 – Ensure all clients successfully play entire video
 – P2P and CPM clients cache chunks to serve peers
 – No pre-population

Main metric: Server capacity (⇒ bandwidth out of server complex)
Performance Comparison with VoD Trace

CPM and P2P perform similarly for today’s workload!
Performance with 10x traffic intensity

CPM imposes lower server and peer load when system load increases!
Evaluation using Synthetic Workload

• Provider end:
 – 1 server and 1 directory server as part of one VHO
 – Video library of 888 videos
 • consists of Popular (8), Medium popular (80) and Rare (800) sets
 • standard definition video (2 Mbps bitrate), 30 minutes long

• Client end:
 – 1000 clients under single VHO
 • 10 Mbps downlink, 1 Mbps uplink
 – Clients request for video from the video library
 • 60% → Popular, 30% → Medium Popular, 10% → Rare
 – Each client is pre-populated with one video from popular set
 • first 10 chunks (5 min) of video pre-populated (~75 MBytes)
 – Inter-arrival time of request for video
 • 50% of clients request in the initial 5 minutes
 • remaining 50% request over the next 20 minutes

• Compare CPM with idealized P2P, unicast, and multicast
 – Study the effect of the different parameters
Estimate of Server Capacity

Multicast OR P2P: factor of 2 improvement over unicast
Multicast AND P2P: factor of 4 improvement over unicast
Sensitivity to Peer Upload Bandwidth

Even when the upload bandwidth is constrained, CPM works well
Sensitivity to Popularity of Content

Using multicast + P2P makes CPM less sensitive to popularity changes
Summary

• Video viewing will increasingly be “on demand”
 – Need delivery techniques that scale to a large user base

• Propose CPM for serving on-demand video
 – Unified solution that satisfies VoD requirements
 – Dynamically identifies best delivery mechanism
 – Exploits the strengths of multicast, P2P, and unicast

• CPM has substantial benefits
 – For users:
 – Good viewing experience even under high system load
 – For service providers:
 – reduces server and bandwidth resource requirements
Summary

We have successfully deployed an end-end IPTV service based on the Internet Protocol Suite.

We needed to carefully manage several aspects of the architecture and protocol:
- Network Design
- Failure Recovery
- Enhance UDP to recover from packet loss
- Careful network management to anticipate problems

Scale is still a challenge:
- Handling Channel Change – migrate to an all-multicast?
- Handling VoD – CPM is a reasonable solution